液体清澄化技術(単位操作)の基礎実験

(日本液体清澄化技術工業会 編)

目 次

はじめに(本書の目的)

<概 論 編>

第	1	章	泀	} 澄	化技術の基礎知識(基本概念)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	1.	1	ž	友体	清澄化技術とは・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	1.	2	5	} 離	法の種類・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・)
		1.	2.	1	速度分離法 ••••••••••••••••••••••••••••••••••••	3
		1.	2.	2	平衡分離法 ••••••••••••••••••••••••••••••••••••	3
		1.	2.	3	反応分離法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	F
	1.	3	5	ì離	の原理と基礎式・・・・・・・・・・・・・・・・・・・・・・・・・・・・	;
		1.	3.	1	速度差分離・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・5	5
			(1)	禾	多動速度・流速(Flux)の定義式 ······	5
			(2)	ì	速度差分離を利用した例・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5	5
			(3)	禾	多動速度を大きくする方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	;
			(4)	禾	多動量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	;
		1.	3.	2	平衡分離・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	;
			(1)	<u>7</u>	平衡分離の種類・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	;
			(2)	5	分配係数••••••••••••	7
			(3)	5	分離係数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
			(4)	<u>7</u>	平衡分離における分配係数の例・・・・・・・・・・・・・・・・・・・・・・・・ 7	7
		1.	3.	3	反応分離・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
			(1)	A	$\mathbf{A} \cdot \mathbf{B} + \mathbf{C} = \mathbf{A} \cdot \mathbf{C} + \mathbf{B} \cdots \mathbf{S}$	3
			(2)	A	$A + B = C + D \cdots 8$	3
			(3)	A	$\mathbf{A} + \mathbf{B} = \mathbf{A} \cdot \mathbf{B} \cdots \cdots$	3
	1.	4	5	斺離	性能・分離効率・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 8	}
			(1)	I	回収率(分離率)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 8	3
			(2)	3	且止率(捕集効率)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・)
	1.	5	5	湪離	性能に影響を与える因子(理論値と実験値の関係) ・・・・・・・・・・ 9)
		1.	5.	1	実際の分離性能に影響を与える因子 ・・・・・・・・・・・・・・・・・・・・・・・)
			(1)	ţ	共存物質の影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・ g)
			(2)	가 코	表置特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ g)
			(3)	1	_{実液性状の変化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・} g)

		(4)	イ	下適切な操作条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
		(5)	イ	下十分な維持管理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
	1.	5.	2	理論式の適用条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	0
1	. 6) 7	友体	清澄化技術の種類と適応分野・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	0
1	. 7	7 译	園液	分離技術選定のための予備知識 ・・・・・・・・・・・・・・・・・・・・・・・・・・・1	1
	1.	7.	1	懸濁固形物の分離・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
	1.	7.	2	固液分離法選定のための手順・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・1	2
	1.	7.	3	分離方法検討のための予備調査 ・・・・・ 1	3
		(1)	р	H 測定·······1	3
		(2)	厉	夏水中の固形物挙動の確認・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
		(3)	浡	素発残渣や電気伝導率の確認・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
		(4)	淅	占度(粘性係数)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
		(5)	逘	疑集性····································	4
		(6)	7	5過助剤、吸着剤・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
	第	;1 章	「参	考文献・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
第2	2章	t 清	} 澄	化技術単位操作の概論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
2	. 1	人人	是集	沈降・凝集浮上・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
	2.	1.	1	初めに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
	2.	1.	2	凝集理論 -凝集と分散1	6
	2.	1.	3	高分子凝集剤の作用機構・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・1	8
	2.	1.	4	凝集剤の種類・・・・・・1	9
		(1)	魚	無機凝集剤・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	0
		(2)	一	高分子凝集剤・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
	2.	1.	5	沈降分離の基礎・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・2	2
		(1)	\mathcal{V}	北降分離・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
		(2)	\mathcal{V}	北降分離装置・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
	2.	1.	6	浮上分離の基礎・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
2	. 2	2 急	速	ろ過・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
	2.	2.	1	急速ろ過とは・・・・・・2	8
		(1)	7	3過の歴史・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
		(2)	倉心	急速ろ過の特長・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
		(3)	卢元	急速ろ過のろ過速度と洗浄の必要性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・2	9
	2.	2.	2	急速ろ過のろ過装置と凝集ろ過 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・2	9
			-		
		(1)	化	ゆろ過における圧力式・重力式および通水経路による分類・・・・・・2	9

2	. 2.	3 粒状ろ材の種類とろ材構成および洗浄方法 ・・・・・・・・・・ 33
	(1)	粒状ろ材の種類と使用法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・33
	(2)	粒状ろ材における単層ろ過と多層ろ過 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	(3)	粒状ろ材における各種洗浄方式 ・・・・・・・・・・・・・・・・・・・・・・・・・ 36
2	. 2.	4 高速ろ過用ろ材の種類と洗浄方法 ・・・・・・・・・・・・・・・・・・・・・・37
	(1)	高速ろ過用ろ材の種類・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	(2)	長繊維ろ材における洗浄・・・・・・・・・・・・・・・・・・・・・・・・・・・・・38
2	. 2.	5 ろ過および逆洗理論 ・・・・・ 38
	(1)	急速ろ過におけるろ過速度 ・・・・・ 38
	(2)	ろ過方程式・・・・・・ 39
	(3)	粒状ろ材におけるろ過圧力損失 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 40
	(4)	最適膨張比率と必要逆洗速度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・41
2.	3 道	氢心分離・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2	. 3.	1 遠心分離機の分類・・・・・・43
2	. 3.	 2 遠心沈降機の対象液・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・43
2	. 3.	 3 重力による固液分離・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	(1)	重力沈降速度 ••••••••••••••••••••••••••••••••••••
	(2)	相当径(ストークス径)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・45
	(3)	バッチ式から連続式への沈降プロセスの効率化 ・・・・・・・・・・・・・ 45
2	. 3.	4 遠心場における固液分離 · · · · · · · · · · · · · · · · · · ·
	(1)	遠心沈降速度·······47
	(2)	遠心場での連続分離・・・・・・48
	(3)	分離板型遠心沈降機の分離経路・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・49
	(4)	分離板の分離限界粒子の挙動・・・・・・・・・・・・・・・・・・・・・・・・・・・・50
	(5)	分離板型遠心沈降機の処理能力・・・・・・・・・・・・・・・・・・・・・・・・・・・・50
	(6)	円筒型遠心沈降機による固液分離 ・・・・・・・・・・・・・・・・・・・・・・ 51
2.	4 胞	梲水ろ過・・・・・・・・・・・・55
2	. 4.	1 脱水ろ過の位置付け・・・・・ 55
2	. 4.	 2 装置と特徴・・・・・・・・・・・・・・・・・・・・・・・・56
	(1)	真空ろ過機・・・・・・56
	(2)	フィルタープレス・・・・・・・57
	(3)	スクリュープレス・・・・・・59
	(4)	ベルトプレス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・60
2	. 4.	3 ろ過の基礎・・・・・ 61
	(1)	ろ過式とケーク比抵抗・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・61
	(2)	ケーク含水率・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

	2. 4	. 4	- 脱水ろ過試験法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
	2. 4	. 5	5 前処理・・・・・・・・・・・・・・・・・・・・・・・	3
	2. 4	. 6	5 ろ材・・・・・・60	6
2.	5	精	密ろ過(MF)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・68	8
	2. 5	. 1	精密ろ過とは?(用途と特徴) ・・・・・・・・・・・・・・・・・・・・・	8
	2. 5	. 2	2 ろ過装置とろ過操作・・・・・ 69	9
	(1)	ろ過装置・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・69	9
	(2)	定圧ろ過と定流量ろ過・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	0
	(3)	ろ過操作・・・・・?7	1
	2. 5	. 3	・フィルターの種類と材質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・?	2
	(1)	メンブレンフィルター・・・・・・・・・・・・・・・・・・・・・・・・・・・・・?	2
	(2)	不織布フィルター・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 7:	2
	(3)	精密ろ過フィルターの素材と構造 ・・・・・・・・・・・・・・・・・・・・・・?	2
	2. 5	. 4	- ろ過理論(ろ過モデル)・・・・・・・・・・・・・・・・・・・・・・・・・ 7:	3
	(1)	標準閉塞 (Standard Blocking) ろ過モデル(n=1.5)・・・・・ 74	4
	(2)	完全閉塞 (Complete Blocking) ろ過モデル(n=2) ······ 74	4
	(3)	ケークろ過 (Cake Filtration) ろ過モデル(n=0) ······ 75	5
	2. 5	. 5	5 精密ろ過フィルターの試験方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・75	5
	(1)	細孔径の評価法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・70	6
	(2)	ろ過流束とろ過容量の評価法 ······7	7
2.	6	限外	外ろ過(UF)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
	2. 6	. 1	分離膜の用途と特長・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
	2. 6	. 2	2 膜法について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
	2. 6	. 3	3 膜の性質・・・・・・8	1
	(1)	透過流東・・・・・ 82	2
	(2)	阻止率 · · · · · · · · · · · · · · · · · · ·	3
	2. 6	. 4	- 膜素材とその構造・・・・・ 84	4
	2. 6	. 5	5 膜モジュール・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・8!	5
	(1)	円筒型モジュール(チューブラーモジュール) ・・・・・ 85	5
	(2)	中空糸モジュール (ホローファイバーモジュール) ・・・・ 8!	5
	(3)	平板型モジュール・・・・・・・・・・・・・・・・・・・・・・・・・80	6
	(4)	スパイラルモジュール・・・・・・・・・・・・・・・・・・・・・・・・8	6
	2. 6	. 6	5 膜選択のポイント(膜、モジュール) ・・・・・・・・・・・ 8'	7
	2. 6	. 7	' 膜の洗浄・・・・・・8	7
	2. 6	. 8	3 運転方法・・・・・・88	8
	2. 6	. 9	9 MF、UFの用途 ·······88	8

2. 7	ナノろ過(NF)・逆浸透ろ過(RO) ・・・・・・・・・・・	
2. 7	7. 1 液体清澄化における NF および RO 膜の位置付け・・・	
2. 7	7. 2 NF および RO 膜分離の基本概念と基礎式 · · · · · · ·	
(1	1) 浸透現象と逆浸透・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
(2	2) 浸透圧・・・・・	
(3)	3) 膜透過流束と阻止率・・・・・	
(4	(4) 濃度分極・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2. 7	7.3 NF および RO 膜分離性能に影響する因子 · · · · · ·	
(1	(1) クロスフロー流速・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	95
(2)	 (2) 濃縮率および回収率・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	95
(3	3) モジュール配列・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
(4	(4) 前処理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2. 8	イオン交換・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2. 8	8. 1 歴史・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2. 8	8. 2 原理 ······	
2. 8	 8.3 イオン交換樹脂の構造と種類・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2. 8	8. 4 イオン交換樹脂の選択係数 · · · · · · · · · · · · · · · · · · ·	
2. 8	8.5 用語の解説·····	
(1	 (1) 交換容量······ (1) 一一一 	
(2	2) 再生レベル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
(3	3) BV (Bed Volume) ······	
(4	(4) SV (Space Velocity) ······	
(5	5) LV (Linear Velocity) ······	
2. 8	8. 6 イオン交換樹脂の用途、使用例 · · · · · · · · · · · · · · · · · · ·	
(1)	1) イオン父換樹脂のイオン父換性を利用する用途・・・・・	
(2	2) イオン父換樹脂の溶剤の吸着性を利用する用途・・・・・	103
(3	3) イオン父換倒脂に弗二成分を負何させ選択性を増加さ (ハーストン地へた利用)たい難	せる万法・・・・・・ 104 104
(4	4) イオン排除を利用した分離・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	104 105
Z. 9		105
2. 9	9.1 信位化技術における酸化速化操作の位置的け	105
2. 9	9. 2 オノンの差〜和載	105
(1)	(1) スノンの住員(9) オゾンの制法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	106
2 0	 A / Y V Z Z A / Y V Z Z 	
2.9 20	 3. 3 スノン区心床IF 9. 4 オゾンの酸化反応機構・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	107
2. 5	1) オゾンの反応経路・・・・・	

	(2)	仸	足進酸化反応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1	09
2.	9.	5	オゾン注入率と反応効率・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
2.	9.	6	オゾン処理の実施例・・・・・・1	11
第	2 章	参	考文献・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12

<実 験 編>

第3	章	実験およびレポート作成の基礎 ・・・・・・・・・・・・・・・・・・・・・・・・・・114
3	. 1	実験を効果的かつ安全に行うための準備と留意点・・・・・・・・・・・・・・・・・・・・・・114
	(1) 実験を開始する前に準備しておくべき課題 ・・・・・・・・・・・・・・・・114
	(2) 安全の確保・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	(3	ジ 実験実施中の注意事項・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・115
	(4) 実験終了後の注意事項・・・・・・116
3	. 2	実験レポートの書き方・・・・・116
	(1) 実験レポート作成の目的・・・・・・116
	(2) 正確で分かりやすい実験レポートの書き方 ・・・・・・・・・・・・・・・・116
	(3) 表紙・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	(4	。) 目的・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	(5	ジ 理論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	(6) 方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	(7	が) 結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	(8	3) 考察・・・・・・118
	(9	り 結論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	(10) 使用記号・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	(11) 引用文献(参考文献) ・・・・・ 119
3	. 3	有効数字 · · · · · · · · · · · · · · · · · · ·
	(1	 有効数字の考え方・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	(2) 測定値を読み取るルール ・・・・・ 119
	(3) 測定値はどの桁まで信用できるのか・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	(4) 有効数字の読み取り時の注意(デジタル値の有効数字)・・・・・・・・120
	(5	5) 読み取り時の注意・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	(6	i) 有効数字の取り扱いの注意 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・121
3	. 4	実験における計測の自動化と制御
	3. 4	. 1 自動計測用機器 · · · · · · · · · · · · · · · · · · ·
	(1) 流量・・・・・・123
	(2	的 液量 · · · · · · · · · · · · · · · · · ·

	(3)) 圧力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	123
	(4)) 温度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	····· 123
3	. 4.	. 2 電気回路の基礎・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	····· 124
	(1)) 基本法則・・・・・	····· 124
	(2)) 制御機器とシーケンス制御・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	····· 125
	(3)) アナログ信号とデジタル信号 ・・・・・	••••• 130
3	. 4.	. 3 コンピューター (PC) によるデータの取り込み・・・・・・・・・	••••• 130
	(1)) アナログデータ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	130
	(2)) デジタルデータ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	130
3	. 4.	. 4 実際の装置例 · · · · · · · · · · · · · · · · · · ·	····· 131
	(1)) 電子天秤によるろ過量の測定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・	····· 131
	(2)) PC カードを使用した測定・・・・・	····· 131
	(3)) 測定ソフトの動き・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	····· 133
3	. 4.	. 5 データ解析・・・・・・	••••• 136
	(1)) センサーの校正・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 136
3	. 4.	. 6 実習:データ収集と解析法	····· 137
	(1)) 電子天秤からのデータ取り込み・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	····· 137
	(2)) データ処理・・・・・	138
	(3)) 圧力などからのデータ取り込み・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 138
	(4)) 圧力への変換・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	138
	(5)) データ処理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	139
5	育 3	章参考文献・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	139
第4章	11 注 注	清澄化技術単位操作の実験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 140
4.	1 浅	凝集分離······	••••• 140
4	. 1.	. 1 目的・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 140
4	. 1.	. 2 概要	••••• 140
4	. 1.	. 3 シリンダーテスト(沈降試験) ・・・・・・・・・・・・・・・・・・・・・・・・	••••• 140
	(1)) 試料および使用薬品・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 141
	(2)) シリンダーテストの進め方・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	····· 142
	(3)) 凝結材および高分子凝集剤添加量の決定手順・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	····· 142
	(4)) データのまとめ・・・・・	143
	(5)		••••• 144
4	. 1.	. 4 ジャーテスト(凝集試験) ····································	••••• 145
	(1)) 試料および使用楽品・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	····· 145
	(2)) シャーテストの進め方・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	146

	(3)	添加量の決定手順・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	(4)	データのまとめ・・・・・・147
	(5)	応用試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.	1.	5 浮上テスト・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・149
	(1)	試料および使用薬品・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	(2)	浮上テストの進め方・・・・・・149
	(3)	加圧水量の決定方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	(4)	データの整理方法・・・・・・150
	(5)	応用試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4. 2	2 夜	∲ろ過····································
4.	2.	1 目的・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.	2.	2 懸濁粒子除去率とろ過係数 ・・・・・ 158
4.	2.	3 試料と試験器具・・・・・・159
	(1)	試料・・・・・・159
	(2)	ろ過材と試験器具・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	(3)	測定用機器・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.	2.	4 実験方法・・・・・・160
	(1)	試験条件・・・・・・160
	(2)	試料の調整・・・・・・160
	(3)	ろ過試験・・・・・・160
4.	2.	5 実験結果・・・・・161
	(1)	濁度と粒子除去率・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	(2)	ろ層の粒子除去特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・162
4.	2.	6 理論と実際······162
4.	2.	7 応用問題・・・・・・163
4.	2.	8 応用のための実験・・・・・164
	(1)	ろ液中の微粒子径と粒子個数の測定 ・・・・・・・・・・・・・・・・・・・・・・・164
	(2)	逆洗展開率と粒子の流動状態の関係 ・・・・・・・・・・・・・・・・・・・・・・・166
4.	2.	9 Q & A · · · · · · 166
4. 3	送	፤心沈降⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
4.	3.	1 スピンテストの目的・・・・・ 169
4.	3.	2 スピンテストの原理・・・・・ 169
	(1)	スピンテストによる vgの算出 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・169
	(2)	連続遠心分離機の処理量の公式 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 171
4.	3.	3 スピンテスト・・・・・・・・・・・・・・・・・・・・・・・・・171
	(1)	準備・・・・・・171

		(2)	スピンテストの手順・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・1	.73
		(3)	スピンテスト結果からの実用機選定手順 ・・・・・・・・・・・・・・・・・・・・・・	73
		(4)	パン酵母のスピンテスト実施例 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・1	.74
	4.	3.	4 応用のための実験・・・・・・1	.76
		(1)	サンプル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・1	.76
		(2)	機器・・・・・・1	.76
		(3)	実験方法	.77
		(4)	スケールアップ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・1	77
		(5)	実施例・・・・・・1	77
	4.	3.	5 Q & A · · · · · 1	.78
4.	4	彤	梲水ろ過・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	79
	4.	4.	1 目的・・・・・・1	.79
	4.	4.	 原理・理論・概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.79
		(1)	ろ過速度・・・・・・・・・・・・1	.79
		(2)	ケーク比抵抗・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.80
		(3)	圧縮性指数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.80
	4.	4.	 3 試料と装置・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.81
		(1)	試料1	.81
		(2)	試験器具・・・・・・1	.82
	4.	4.	4 実験方法・・・・・・1	.83
		(1)	比抵抗測定実験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・1	.83
		(2)	プリコートろ過実験・・・・・・1	.83
		(3)	含水率の測定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.84
	4.	4.	5 データ整理とその例 ······1	.85
	4.	4.	6 考察	.85
	4.	4.	7 応用問題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・1	.85
	4.	4.	8 応用のための実験・・・・・・1	.87
	4.	4.	9 Q & A · · · · · · 1	.88
4.	5		1F 膜評価実験(デッドエンドろ過) ・・・・・・・・・・・・・・・・・・・・・・・1	95
	4.	5.	1 目的・・・・・・1	.95
	4.	5.	2 メンブレンフィルター評価試験の必要性 ・・・・・・・・・・・1	.95
	4.	5.	3 メンブレンフィルターの評価項目 ······1	.95
	4.	5.	4 標準閉塞ろ過式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・1	.95
	4.	5.	5 実験概要・・・・・・1	.96
		(1)	試験器具・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・1	.96
		(2)	試験装置・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.96

	4.	5.	6 実験方法	97
		(1)	原液の調整・・・・・1	97
		(2)	膜の予備洗浄(フラッシング)手順 ・・・・・・・・・・・・・・・・・・・・・・1	97
		(3)	ろ過試験手順・・・・・・1	97
	4.	5.	7 ろ過試験・・・・・1	98
		(1)	試験条件・・・・・・1	98
		(2)	ろ過試験結果・・・・・1	98
		(3)	ろ過試験結果の解析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	99
	4.	5.	8 演習問題 · · · · · · · · · · · · · · · · · · ·	00
4.	6	5 U	IF 膜による有機物の分画と濃縮・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・2	01
	4.	6.	1 目的・・・・・2	01
	4.	6.	2 概要	01
	4.	6.	3 実験装置 · · · · · · · · · · · · · · · · · · ·	02
		(1)	小規模実験器・・・・・2	02
		(2)	ベンチトップ試験機・・・・・・2	02
	4.	6.	4 実験・・・・・2	03
		(1)	小規模実験・・・・・2	03
		(2)	膜モジュールを用いた中規模実験・・・・・・・・・・・・・・・・・・・・・・・・・2	06
	4.	6.	5 理論と解析法······2	13
		(1)	透過流束・・・・・2	13
		(2)	阻止率	13
		(3)	計算例	14
	4.	6.	6 スケールアップ(応用問題) ・・・・・2	15
	4.	6.	7 Q & A · · · · · · · 2	17
4.	7	N	☞ 膜、RO 膜による脱塩と分画 ····· 2	18
	4.	7.	1 目的・・・・・2	18
	4.	7.	2 原理・理論・概要 ······· 2	18
		(1)	純水透過係数・・・・・・2	19
		(2)	見かけの阻止率と浸透圧・・・・・・・・・・・・・・・・・・・・・・・・・・・・2	19
		(3)	物質移動係数と濃度分極・・・・・・・・・・・・・・・・・・・・・・・・・・・・2	19
	4.	7.	3 試料と装置······2	20
		(1)	実験装置 · · · · · · · · · · · · · · · · · · ·	20
		(2)	平膜セルの組み立て方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・2	20
		(3)	実験のコツ、留意点・・・・・・2	21
	4.	7.	4 実験方法	22
		(1)	純水透過係数の測定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	22

	(2) 見かけの阻止率と浸透圧の測定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	···· 222
	(3) 見かけの阻止率と回転数の影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· • • • 223
	(4) 軟水化処理・・・・・・	· • • • 223
	. 7. 5 データ整理とその例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· • • • 223
	(1) 純水透過係数の測定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· • • • 223
	(2) 見かけの阻止率と浸透圧の測定 ・・・・・・・・・・・・・・・・・・・・・・	· • • • 223
	(3) 見かけの阻止率と回転数の影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	··· 224
	(4) 軟水化処理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••• 224
	. 7. 6 理論と実際・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••• 225
	(1) 透過流速・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	···· 225
	(2) 見かけの阻止率・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	···· 225
	. 7. 7 応用問題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	···· 225
	 (1) 平膜セルの物質移動速度の計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	225
	(2) スパイラル型 RO 膜モジュールの濃度分極 ・・・・・・・・・・・・・	•••• 225
	. 7. 8 モジュールの性能評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••• 226
	(1) 目的・・・・・・	226
	(2) 連続式実験装置······	•••• 226
	(3) 実験手順・・・・・	•••• 227
	(4) データ整理・・・・・	227
	. 7. 9 Q & A	228
4.	8 イオン交換による硬水軟化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	231
	. 8. 1 目的	231
	. 8. 2 理論	231
	. 8. 3 試料と装置・器具····································	231
	 イオン交換樹脂・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	231
	(2) カラム(ガラス製、プラスチック製) ・・・・・・・・・・・・・・・	231
	(3) 架台、クランプ・ムッフ類・・・・・・・・・・・・・・・・・・・・・・・	233
	(4) 原水タンク・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	233
	(5) ポンプ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	233
	(6) 配管材 (軟質 PVC など) ······	233
	(7) バルブ(テフロン製コック、スクリューコックなど)・・・・・・・・・・	233
	(8) オートサンプラー(フラクションコレクター) ・・・・・	233
	(9) 処理水試料採取容器······	233
	(10) 分析器具・機器・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	233
	. 8. 4 実験方法······	234
	(1) 装置の組み立て・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	234

		(2)	厚	亰水の調整・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		(3)	Ŧ	 手生剤の調整・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・234
		(4)	村	樹脂のコンディショニングおよび計量、樹脂充填・・・・・・・・・・・・234
		(5)	栯	樹脂の再生・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		(6)	ì	恿水処理······235
		(7)	言正	式験サイクル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・235
		(8)		実験のコツ・留意点・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・238
	4.	8.	5	データ整理とその例・・・・・・・・・・・・・・・・・・・・・・・・・・・・236
	4.	8.	6	理論と実際・・・・・239
	4.	8.	7	スケールアップ(応用問題) ・・・・・239
	4.	8.	8	応用のための実験・・・・・240
		(1)	7	カラム操作・・・・・・240
		(2)	/	イオン交換樹脂銘柄のスクリーニング ・・・・・・・・・・・・・・・・・・・・・・・243
		(3)	/	イオン交換樹脂のコンディショニング・再生・通水処理の一般的方法・・・ 243
	4.	8.	9	Q & A · · · · · · · · 245
4.	9) オ	-ゾ	ン酸化による水中有機物の分解
	4.	9.	1	目的・・・・・247
	4.	9.	2	概要
	4.	9.	3	オゾン濃度の単位表示・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・247
	4.	9.	4	試料と装置・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・248
		(1)	夊	见理原液······248
		(2)	Ξ	主要機器・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		(3)	泪	則定用機器・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		(4)	4	その他の器具・・・・・・252
	4.	9.	5	実験方法・・・・・252
		(1)	5	実験条件と測定項目・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・252
		(2)	5	実験手順・・・・・・・・・・・・254
	4.	9.	6	データ整理とその例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・255
	4.	9.	7	考察・・・・・255
		(1)	7	オゾン処理における反応効率の検討・・・・・・・・・・・・・・・・・・・・・・・・・255
	4.	9.	8	応用問題・・・・・・250
	4.	9.	9	応用のための実験・・・・・257
		(1)	7	オゾン・過酸化水素処理による有機物の除去 ・・・・・・・・・・・・・・・257
	編	集者	i •	執筆者一覧・・・・・・・・・・・・259