21世紀の液体清浄化技術を考える

2. グローバル化時代への挑戦
－台湾における液体清浄化技術の現状と将来－
呂 雄明

台湾は台湾島およびその周辺の小島ならびに、その総面積は36,000km²で、大きさはほぼ日本の中屋敷に等しい。台湾はおよそ3,000万人に及ぶ。台湾はおよそ半島と呼ばれる中国の領土に含まれていたが、中華民国がこれを国際法上の独立国として承認し、日本の占領下から自由な国として独立することを認められた。このことが台湾の経済、政治の発展に果たした大きな役割である。

液体清浄化技術 (LFFT) に関わる産業は、主に次の3つの分野に細分化される。これらの技術は、清浄化のための技術としての役割を果たす。特に、これらの産業は、日本の経済、文化の発展に大きく寄与している。

1. LFFT 関連産業の現状

台湾におけるLFFTの現状を論じるためには、生産やLFFTにおける産業の状況から広がる方が合理的だろう。表1は最近3年間のLFFT関連産業の年生産量と産業の比率の状況を示す。ここに示されたデータから、イラン各国がこれに数多、経済に大きな影響を及ぼすことがわかるので、この表をよくみると、台湾産業の数多大でなければならぬことがわかる。すなわち、台湾の製造業の中心は石油化学工業で、次に化学工業などが続いている。これら2つの中心産業は、いずれも資本集約的であるが、さらにこれらの産業が発展するためには、技術の向上が求められている。

表1 LFFT関連産業の年生産量と産業（単位：10億台ドル）

<table>
<thead>
<tr>
<th>年</th>
<th>1997</th>
<th>1998</th>
<th>1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>石油化学工業</td>
<td>480.0</td>
<td>940.0</td>
<td>1940.0</td>
</tr>
<tr>
<td>金属製品</td>
<td>578.0</td>
<td>940.0</td>
<td>1940.0</td>
</tr>
<tr>
<td>産業技術</td>
<td>445.0</td>
<td>995.0</td>
<td>1985.0</td>
</tr>
<tr>
<td>環境材料技術産業</td>
<td>33.2</td>
<td>680.0</td>
<td>1373.0</td>
</tr>
<tr>
<td>化学工業</td>
<td>56.8</td>
<td>104.1</td>
<td>215.5</td>
</tr>
<tr>
<td>その他</td>
<td>214.0</td>
<td>360.0</td>
<td>700.0</td>
</tr>
</tbody>
</table>

* 国立台湾大学化学系工業研究

2001年2月号
1-1. 化学プロセス工業

台湾の化学プロセス工業は、日本の化学工業に匹敵する規模を持つ。特に、製材業分野で顕著な成長を見せ、米国、欧州、アジア各地に進出している。この成長は、石油化学工業、染料化学工業、薬品化学工業など、多岐にわたります。特に、貿易ルートを通じての貿易が活発となり、国際的な競争力を増幅している。

1-2. 手工業産業

手工業産業は、台湾の伝統的な産業で、特に繊維産業が盛んである。繊維産業は、特にコンバインの産業で、産地は南部の台南北部に多い。この産業は、伝統の技術を現代化して、国際市場に競争力を提供している。

図1: 台湾の産業構成

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>製材</td>
<td>11.2%</td>
<td>11.5%</td>
<td>11.0%</td>
<td>10.9%</td>
<td>11.1%</td>
</tr>
<tr>
<td>製材機械</td>
<td>5.3%</td>
<td>5.4%</td>
<td>5.3%</td>
<td>5.2%</td>
<td>5.1%</td>
</tr>
<tr>
<td>製材機械設備</td>
<td>3.8%</td>
<td>3.7%</td>
<td>3.8%</td>
<td>3.7%</td>
<td>3.6%</td>
</tr>
<tr>
<td>金属製品</td>
<td>12.2%</td>
<td>12.3%</td>
<td>12.1%</td>
<td>12.0%</td>
<td>12.1%</td>
</tr>
<tr>
<td>製造物</td>
<td>24.8%</td>
<td>24.9%</td>
<td>24.8%</td>
<td>24.7%</td>
<td>24.8%</td>
</tr>
<tr>
<td>製造物機械</td>
<td>5.6%</td>
<td>5.7%</td>
<td>5.6%</td>
<td>5.5%</td>
<td>5.4%</td>
</tr>
<tr>
<td>製造物機械設備</td>
<td>4.2%</td>
<td>4.3%</td>
<td>4.2%</td>
<td>4.1%</td>
<td>4.0%</td>
</tr>
</tbody>
</table>

図2: 台湾の主要産業

1. 化学工業
2. 繊維産業
3. 金属製品
4. 製造物
5. 製造物機械
6. 製造物機械設備
7. 金属製品機械
8. 金属製品機械設備

図3: 台湾の主要産業の成長率

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>化学工業</td>
<td>6.5%</td>
<td>6.6%</td>
<td>6.5%</td>
<td>6.4%</td>
<td>6.5%</td>
</tr>
<tr>
<td>繊維産業</td>
<td>5.8%</td>
<td>5.9%</td>
<td>5.8%</td>
<td>5.7%</td>
<td>5.8%</td>
</tr>
<tr>
<td>金属製品</td>
<td>5.2%</td>
<td>5.3%</td>
<td>5.2%</td>
<td>5.1%</td>
<td>5.2%</td>
</tr>
<tr>
<td>製造物</td>
<td>6.0%</td>
<td>6.1%</td>
<td>6.0%</td>
<td>5.9%</td>
<td>6.0%</td>
</tr>
<tr>
<td>製造物機械</td>
<td>5.4%</td>
<td>5.5%</td>
<td>5.4%</td>
<td>5.3%</td>
<td>5.4%</td>
</tr>
<tr>
<td>製造物機械設備</td>
<td>4.9%</td>
<td>5.0%</td>
<td>4.9%</td>
<td>4.8%</td>
<td>4.9%</td>
</tr>
</tbody>
</table>

化学工業

台湾の化学工業は、日本の化学工業に匹敵する規模を持つ。特に、製材業分野で顕著な成長を見せ、米国、欧州、アジア各地に進出している。この成長は、石油化学工業、染料化学工業、薬品化学工業など、多岐にわたります。特に、貿易ルートを通じての貿易が活発となり、国際的な競争力を増幅している。

手工業産業は、台湾の伝統的な産業で、特に繊維産業が盛んである。繊維産業は、特にコンバインの産業で、産地は南部の台南北部に多い。この産業は、伝統の技術を現代化して、国際市場に競争力を提供している。

図1: 台湾の産業構成

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>製材</td>
<td>11.2%</td>
<td>11.5%</td>
<td>11.0%</td>
<td>10.9%</td>
<td>11.1%</td>
</tr>
<tr>
<td>製材機械</td>
<td>5.3%</td>
<td>5.4%</td>
<td>5.3%</td>
<td>5.2%</td>
<td>5.1%</td>
</tr>
<tr>
<td>製材機械設備</td>
<td>3.8%</td>
<td>3.7%</td>
<td>3.8%</td>
<td>3.7%</td>
<td>3.6%</td>
</tr>
<tr>
<td>金属製品</td>
<td>12.2%</td>
<td>12.3%</td>
<td>12.1%</td>
<td>12.0%</td>
<td>12.1%</td>
</tr>
<tr>
<td>製造物</td>
<td>24.8%</td>
<td>24.9%</td>
<td>24.8%</td>
<td>24.7%</td>
<td>24.8%</td>
</tr>
<tr>
<td>製造物機械</td>
<td>5.6%</td>
<td>5.7%</td>
<td>5.6%</td>
<td>5.5%</td>
<td>5.4%</td>
</tr>
<tr>
<td>製造物機械設備</td>
<td>4.2%</td>
<td>4.3%</td>
<td>4.2%</td>
<td>4.1%</td>
<td>4.0%</td>
</tr>
</tbody>
</table>

図2: 台湾の主要産業

1. 化学工業
2. 繊維産業
3. 金属製品
4. 製造物
5. 製造物機械
6. 製造物機械設備
7. 金属製品機械
8. 金属製品機械設備

図3: 台湾の主要産業の成長率

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>化学工業</td>
<td>6.5%</td>
<td>6.6%</td>
<td>6.5%</td>
<td>6.4%</td>
<td>6.5%</td>
</tr>
<tr>
<td>繊維産業</td>
<td>5.8%</td>
<td>5.9%</td>
<td>5.8%</td>
<td>5.7%</td>
<td>5.8%</td>
</tr>
<tr>
<td>金属製品</td>
<td>5.2%</td>
<td>5.3%</td>
<td>5.2%</td>
<td>5.1%</td>
<td>5.2%</td>
</tr>
<tr>
<td>製造物</td>
<td>6.0%</td>
<td>6.1%</td>
<td>6.0%</td>
<td>5.9%</td>
<td>6.0%</td>
</tr>
<tr>
<td>製造物機械</td>
<td>5.4%</td>
<td>5.5%</td>
<td>5.4%</td>
<td>5.3%</td>
<td>5.4%</td>
</tr>
<tr>
<td>製造物機械設備</td>
<td>4.9%</td>
<td>5.0%</td>
<td>4.9%</td>
<td>4.8%</td>
<td>4.9%</td>
</tr>
</tbody>
</table>

化学工業

台湾の化学工業は、日本の化学工業に匹敵する規模を持つ。特に、製材業分野で顕著な成長を見せ、米国、欧州、アジア各地に進出している。この成長は、石油化学工業、染料化学工業、薬品化学工業など、多岐にわたります。特に、貿易ルートを通じての貿易が活発となり、国際的な競争力を増幅している。

手工業産業は、台湾の伝統的な産業で、特に繊維産業が盛んである。繊維産業は、特にコンバインの産業で、産地は南部の台南北部に多い。この産業は、伝統の技術を現代化して、国際市場に競争力を提供している。

図1: 台湾の産業構成

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>製材</td>
<td>11.2%</td>
<td>11.5%</td>
<td>11.0%</td>
<td>10.9%</td>
<td>11.1%</td>
</tr>
<tr>
<td>製材機械</td>
<td>5.3%</td>
<td>5.4%</td>
<td>5.3%</td>
<td>5.2%</td>
<td>5.1%</td>
</tr>
<tr>
<td>製材機械設備</td>
<td>3.8%</td>
<td>3.7%</td>
<td>3.8%</td>
<td>3.7%</td>
<td>3.6%</td>
</tr>
<tr>
<td>金属製品</td>
<td>12.2%</td>
<td>12.3%</td>
<td>12.1%</td>
<td>12.0%</td>
<td>12.1%</td>
</tr>
<tr>
<td>製造物</td>
<td>24.8%</td>
<td>24.9%</td>
<td>24.8%</td>
<td>24.7%</td>
<td>24.8%</td>
</tr>
<tr>
<td>製造物機械</td>
<td>5.6%</td>
<td>5.7%</td>
<td>5.6%</td>
<td>5.5%</td>
<td>5.4%</td>
</tr>
<tr>
<td>製造物機械設備</td>
<td>4.2%</td>
<td>4.3%</td>
<td>4.2%</td>
<td>4.1%</td>
<td>4.0%</td>
</tr>
</tbody>
</table>

図2: 台湾の主要産業

1. 化学工業
2. 繊維産業
3. 金属製品
4. 製造物
5. 製造物機械
6. 製造物機械設備
7. 金属製品機械
8. 金属製品機械設備

図3: 台湾の主要産業の成長率

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>化学工業</td>
<td>6.5%</td>
<td>6.6%</td>
<td>6.5%</td>
<td>6.4%</td>
<td>6.5%</td>
</tr>
<tr>
<td>繊維産業</td>
<td>5.8%</td>
<td>5.9%</td>
<td>5.8%</td>
<td>5.7%</td>
<td>5.8%</td>
</tr>
<tr>
<td>金属製品</td>
<td>5.2%</td>
<td>5.3%</td>
<td>5.2%</td>
<td>5.1%</td>
<td>5.2%</td>
</tr>
<tr>
<td>製造物</td>
<td>6.0%</td>
<td>6.1%</td>
<td>6.0%</td>
<td>5.9%</td>
<td>6.0%</td>
</tr>
<tr>
<td>製造物機械</td>
<td>5.4%</td>
<td>5.5%</td>
<td>5.4%</td>
<td>5.3%</td>
<td>5.4%</td>
</tr>
<tr>
<td>製造物機械設備</td>
<td>4.9%</td>
<td>5.0%</td>
<td>4.9%</td>
<td>4.8%</td>
<td>4.9%</td>
</tr>
</tbody>
</table>

化学工業
比較的のリサイクル産業を提携できるだけだできる。

たとは、産業用の環境システムに必要なノ
ノウハウをよりなる製品要素のと下さくこと、日本の野
動性マイクライエンス、既存産業、ベルギ、オラン
テのCois、そして南極のGleggによって供給されたも
ので、国内企業に加え、地域産業のたる下下の隣
隣としている下があく産業として働いたが、とお
の、このイタリア無水の化学薬用、化学薬用を通
じてすべて輸入されている。いくつもの国内企業がこ
の産業への参入を計画している。

1.3. 工場環境産業

このグループはLFPの技術をベースに造る産業である
が、それはこの産業がさまざまなプロセス産業の産
能効率値処理システムおよび半導体産業の半導体システム
のほとんどを含んでいるからである。これらの産業は
、主に新製の製造および半導体製造あるいは装置部
品の供給を含んでいる。図3は、工場環境産業関連企業の
構成を、工場を示しているが、かなり大き
な年間生産量を占める公共水道設備および下水設備
は含まれていない。

この産業の一つの目抜きの、工場環境システムの事業に参
加しているのは21社である。この着しい節
果は、この半導体プラントのほとんどが「完成品質
渡し方法」によって両立できる、フレキシブルな業務者産業た
まもライセンス内においてから按してしてしまったことである。これらに関する企業については、国内代
産業としては、これらは初期経営を欠ける場合である。しかしながら、国内産業はそれに対する問題の仕方を持たしており、そ
してグローバルに参入するため、さらに重要で役
側を担う方法を探索している。

食品および製薬産業におけるGMPの主要性をもたす、これらの産業の加豆および商品の製造および販売
化された結果を表している。工場環境産業の関連
する企業では、彼らの仕事は、バイオ用医薬品および生
産に必要な加工用の薬剤の開発と製造に集約されている。

このセクションの終わりの部分で、われわれの公開

2001年2月号

67
1-5. 製造業およびバイオテクノロジー産業

これらの2つの産業は10の優先産業の2つとして指定されている。経済は今後30年、その発展のためにあるべき努力を投じていく。特に日本のバイオテクノロジー産業の強化が期待されている。この産業の発展は、日本経済の革新をもたらし、国際的な競争力を高めることになる。

9. 畜産工業（養豚）

畜産業の貢献度は、特に肉の需要の増加によって急激に増加している。特に豚肉の需要増加が顕著で、その効果は両業界ともに大きい。豚肉の需要増加が国内産業の成長を支えている。

4. メキシコ工業

メキシコ工業は、その製品の品質を保証するために、もちろんLPTP産業に依存しているものでありある。メキシコ産業の産業構造は、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われ、製品の需要が需要を変える中で培われる。
2. LPFT間連産業の供給側

LPFT産業の供給側について論ずる前に、台湾経済の特異な構造について述べるべきがある。70年代以降、台湾の大企業のほんとどを範囲や生産を経てゼロであり、大きなローカル企業はほとんどない。大幅な投資家数の90%以上が実体の投資家であると考えられる。経済構造の

2-1. 固定資産構造

例えば、台湾のあるいは国際規模機械装置の供給側の単独の協力はないのない、決して台湾における国一致

分類装置の現代に関する統計をもとにして、再度とし

て筆者衛国機械をもつのであるが。大統計に

いて、機械装置は、プロックでエンジングリ

グ企業およびあるいは、ライザーガーを通じて設計

国がされれば、向ではないか一つとは、装置

を製造することである。そのため、国一致分裂装置

装置、国一致事業は公認されている設計あるいは単純な

設計の装置などは一つとべく、また、もしご機械を

からライスからすれば、彼らはさらに高度なフリ

オメックス装置も含むことができる。

国際企業の問題は、市場の新しい設計を創出する

彼らの技術や設計が欠如していることである。台湾の

化学機械業者は、特に鉄工所から始まるので、いくつ

の特別の加工装置で自己の経済を構築する。彼らは、製造方法やそれがどこで売られるかを知る

が、操作経験に無策としている。それゆえ、彼らは自

身を特別装置の供給者として位置づけ、せいの特別

プロセス用の装置供給者としての役割を演じている。

図11に台湾の鉄工所の分裂装置の入手の可能性を示

2-2. 流体輸送装置

国は台湾における流体輸送装置の入手の可能性を

示す。ほとんどの流体ポンプは国内の製造業者から

調達できるが、特別な設計のものや特定の特殊な素材

でできたポンプは海外から輸入する必要がある。選

先進国以外のポンプ、すなわち、空気駆動ダイアフラム

ポンプ、ディスクポンプ、スクリューポンプなどもまた。

国内の製造業者が供給できる。また、当社のコンプレッサ、送風機、そして真空ポンプも供給することができる。

2005年2月号
2-4. 環境材
ガス放出性あるいは化学活性のあるかまたは活性化をほとんどの内
業者から入手可能である。最
近、活性持ちは中国における代替資
本の提供となりますないし輸入
されている。それはパイプ状
状態である代替材の製造用
に輸入されている。インプ
換換要素をないが輸入され
ていて、さまざまなデリバ
リーを通じてユーザーに供給されて
いる。MunstermanとBolenとHasa
は、国内での需要におけるその
分の1を供給する工場を国内に
もっている。

2-5. 製
はんのわずかに、国内生産さ
れるMPとRO膜を除いて、MF,
UF, ROおよびイオン交換膜を
含む、ほとんどのすべての膜は輸
入されている。国内の研究機関は
これらの膜およびバイオ膜の
システムを供給することを見据
しているが、いまだにおいて此
のプロセスは十分に完成させて
いない。
バイオテクノロジーの研究にお
いても、その普及が遅れている膜の
応用はコスト削減の重要性やイオン
水の高純度の製造および注射用
水の製造である。
これで述べたようにも、膜
は次のようなものも用いられ
る。(1) 酵母(10×2.5μm多孔性膜)
による無菌処理。(2) 原料溶液に
による処理の効率化。

2-3. シャブとバイブマッティング
すべての素材において、標準のパイプバイブマッティング
素材を国内業者から入手することはでき、市場で
様々な素材のパイプを変えることがなくなり、最
近、GMPの強化によって、国内市場でパイプバイ
プとバイブマッティングを入手できるようになった。
しかしながら、精巧な製造パイプや特殊用途のウィッ
テナは新たな視点に深い。
3. 研究開発における，産学・官のつながり

先のメモで述べたとおり，台湾の
独自の経済構造において，独自の技術を
作る研究開発能力を持つ余裕のある企業がほ
んどの少ない，という事実を念頭にし
た。生産に必要な技術を提供する，ライセン
ス契約を通じて，あるいは入手するかこ
ろらの購入によって，輸入していたが過
ぎた。図3は台湾の研究活動の分担を示
したものである。大学はそのほとんどが行
政院国科会委員会の推進の下で基礎研究
を，MOEA（または長官からの）からの資金下で応用研究
を行なっている。しかしこの大学の主な分野は，
研究活動を通じて，産業のためのより高いレベルの技
術者や研究者を育成することである。台湾の公的研究
機関は，政府経済の根幹をなす情報，警告，安全な環
境に研究力を注ぐように指示されている。彼らはいく
つもの特定のテーマについての長期研究に従事することと
，産業の新しい環境を創造するために海外から導入
可能な「カリテック技術」を探すため，指定された領
域の新しい技術の発展に注目し続けるように求められ
ている。

過去数十年に，台湾は発展途上国から新規に工
業国へと変化した。台湾経済の独自の強さのため，
台湾はほとんどどの企業ではまだ相応の研究開発力が不
足している。この工業化の過程において，日本の技術を
対照的に研究の母体を形成するため，日本産業
は独自の技術を改編するために，国内産業
に必要な研究技術を提供するよう研究機関に資金を供
給した。公立の研究機関は，海外から先進技術を導入
することに技術的援助を通じて国内産業の競争力を強
めるために，ベンチャー・ビジネス企業と組んで仕事を
している。台湾は大学と協力して，有効で革
革的な専門家を海外から誘致しており，若手研究者や
技術者の研修を受ける研究者あるいは経営者になるよ
うに奨励している。しかしながら，より効果的な協力で研
究の分担が，産業界と大学双方にとって，より効果的
な環境を創造する上で必要である。

【解釈】
この解釈の作成にあたり，著者は，情報収集に関し
て，Dr. Y. S. Shi，Dr. H. S. Li，Dr. S. C. Ju，Prof. C.
Y. Lai，Prof. D. M. Wang，Mr. T. C. Lai，Prof. C. Y.
Chuang そして Ms. S. S. Ku に，資料の作成に関して，
Dr. H. T. Wu および Ms. K. H. Hsu に感謝します。本報告は
2000年シンポジウムにおける，廃棄物処理の講義
（英語）の一部を翻訳したものです。

■日本液体清浄化技術工業会
「ビルマ工場燃料電池見学と燃料水素処理講演会」

当工業会では，サポーティーレポート工場における燃料電池の見学及び技術交流の機会を企画いたしました。燃料水素処理
技術を講演者として講演があり，多くの参加者から高い評価を得ました。以下のような内容です。

【参加者】
- 参加費：参加費：4,000 円（税込） 7,000 円
- 申込方法：日本液体清浄化協会に送付

2000年2月号